skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang, Xiang I.A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The logarithmic law of the wall does not capture the mean flow when a boundary layer is subjected to a strong pressure gradient. In such a boundary layer, the mean flow is affected by the spatio-temporal history of the imposed pressure gradient; and accounting for history effects remains a challenge. This work aims to develop a universal mean flow scaling for boundary layers subjected to arbitrary adverse or/and favourable pressure gradients. We derive from the Navier–Stokes equation a velocity transformation that accounts for the history effects and maps the mean flow to the canonical law of the wall. The transformation is tested against channel flows with a suddenly imposed adverse or favourable pressure gradient, boundary layer flows subjected to an adverse pressure gradient, and Couette–Poiseuille flows with a streamwise pressure gradient. It is found that the transformed velocity profiles follow closely the equilibrium law of the wall. 
    more » « less